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An ideal conductor electrode in contact with a semi-infinite two-dimensional

two-component plasma in an external potential is considered. The model is

mapped onto an integrable sine-Gordon theory with Dirichlet boundary condi-

tions. The information gained from the mapping provides an explicit form of

the surface tension in the plasma-stability regime.
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1. INTRODUCTION

In a previous paper, (1) hereafter referred to as I, the bulk thermodynamic

properties (free energy, specific heat, etc...) of a model, the two-dimensional

(2D) two-component plasma (TCP), or Coulomb gas, have been obtained,

exactly. In the present paper, a surface property of the same model is con-

sidered: the surface tension, at a rectilinear interface between an ideal con-

ductor and the Coulomb gas, is obtained, exactly, as a function of the bulk

density, the applied electric potential, and the temperature, in the whole

temperature range for which the point-particle model is stable. Like in I, a

mapping onto a sine-Gordon field theory, now with a Dirichlet boundary

condition, is made, and known results about that field theory are used. The



resulting surface tension is checked on its high-temperature expansion

derived from a renormalized Mayer expansion and on its singular behav-

iour close to the collapse point.

The model under consideration mimics the interface between an elec-

trolyte (the two-component plasma, made of two species of point-par-

ticles, of opposite charges ± 1) and an electrode (the ideal conductor).

Classical equilibrium statistical mechanics is used. In the grand-canonical

formalism, the control parameters are the inverse temperature b and the

two fugacities z+ and z− of the positive and negative particles, respectively.

Instead of z+ and z−, it is convenient to use z and j defined by z± =ze ±bj.

Alternatively, chemical potentials m+ and m− can be defined by z± =
exp(bm± )/l2, where l is the de Broglie thermal wavelength. The bulk prop-

erties depend only (2) on the chemical potential combination m=(m++m−)/2,
i.e. on z, while m+−m− (or j) is relevant only for the surface properties. (3–5)

The parameter j has a physical meaning: it is the electric-potential dif-

ference between the bulk and the electrode. Indeed, if the potential of the

electrode is taken as the zero and j is the potential in the bulk, each chem-

ical potential, i.e. the reversible work for adding a positive or negative

particle into the bulk, has an electric part j or −j, respectively.
The point-particle model is stable against collapse of positive-negative

pairs for b< 2. This is also the stability range in presence of a rectilinear

ideal conductor wall. Indeed, a particle at a distance x from the wall

interacts with its own image through a potential (1/2) ln(2x) and the

corresponding Boltzmann factor (2x)−b/2 is integrable at small x if and only

if b< 2 (at large x, the interaction is screened).

The paper is organized as follows. In Section 2, the model is precisely

defined and its mapping onto a sine-Gordon field theory is made. This field

theory is described in Section 3. The desired surface tension is derived in

Section 4. Its high temperature expansion is checked in Section 5. Its sin-

gular behaviour close to the collapse point b=2 is checked in Section 6.

2. MAPPING

We consider an infinite 2D space of points r ¥ R2 defined by Cartesian

coordinates (x, y). The model electrode-electrolyte interface is localized

along the y axis, namely at {r=(0, y)}. The half-space x < 0 is assumed to

be occupied by an ideal conductor of dielectric constant EQ., impene-

trable to particles. The electrolyte in the complementary half-space x > 0 is

modeled by the classical 2D TCP of point particles {j} of charge

{qj= ± 1}, immersed in a homogeneous medium of dielectric constant =1.
The interface is kept at zero potential while one assumes a given potential

718 Šamaj and Jancovici



j in the bulk. Equivalently, there is a splitting of the fugacities of the ±
particles:

z+=z exp(bj), z−=z exp(−bj) (1)

The system is translationally invariant in the y direction, so the position-

dependent particle densities n± (r) depend only on x. Let us denote their

asymptotical xQ. values by n+=n−=n/2 where n is the total particle

number density. In the case j=0, n+(x)=n−(x) everywhere.
In infinite space, the Coulomb potential v at spatial position r, induced

by a unit charge at the origin, is given by the 2D Poisson equation

Dv(r)=−2pd(r) (2)

The solution of (2) reads

v(r)=−ln(|r|/r0) (3)

where the length constant r0, which fixes the zero point of energy, is set for

simplicity to unity. Here, the interaction energy E of particles {qj, rj=
(xj > 0, yj)} consists of two parts (see, e.g., ref. 6):

(i) direct particle-particle interactions,

C
i < j

qiqjv(|ri−rj |) (4a)

(ii) interactions of particles with the images of other particles and with

their self-images due to the presence of the conducting wall,

−1
2 C

i, j
qiqjv(|ri−rg

j |) (4b)

where r*=(−x, y). Introducing the microscopic charge density r(r)=
;j qjd(r−rj), the energy contributions (4a) and (4b) are expressible as

follows

E=1
2 F d2r F d2rŒr(r)[v(r, rŒ)−v(r*, rŒ)] r(rŒ)−1

2 Nv(0) (5)

where v(0) is the self-energy. Introducing the microscopic charge + image

charge density

r̄(r)=C
j

qj[d(x−xj)−d(x+xj)] d(y−yj) (6)
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the energy (5) can be rewritten into a more convenient form

E=1
4 F d2r F d2rŒr̄(r) v(r, rŒ) r̄(rŒ)−1

2 Nv(0) (7)

where the integrations over r and rŒ are now taken over the whole space.

The thermodynamic characteristics of the system are determined by

the grand partition function X,

X= C
.

N+=0
C
.

N−=0

zN+
+

N+!
zN−
−

N−!
Q(N+, N−) (8a)

with

Q(N+, N−)=F D
N

j=1
d2rj exp[−bE({qj, rj})] (8b)

being the configuration integral of N+ positive and N− negative charges

and N=N++N−. To express X in terms of a 2D Euclidean sine-Gordon

theory, we first recall that −D/(2p) is the inverse operator of v(r) [see

eq. (2)]. The standard identity then follows

exp 5−
b

4
F d2r F d2rŒr̄(r) v(r, rŒ) r̄(rŒ)6=

> Df exp[> d2r(12 fDf+i`pb fr̄)]

> Df exp(> d2r 1
2 fDf)

(9)

where f(r) is a real scalar field and > Df denotes the functional integration

over this field. Inserting r̄ from (6), the second term in the action of the

field theory (9) takes a nonlocal form i`pb ;j qj[f(xj, yj)−f(−xj, yj)]. It
is therefore convenient to reformulate the field theory (9) as a boundary

problem using a procedure proposed in ref. 7. One introduces two new

fields

fe(x, y)=
1

`2
[f(x, y)+f(−x, y)] (10a)

fo(x, y)=
1

`2
[f(x, y)−f(−x, y)] (10b)

defined only in the positive x \ 0 half-space. Clearly, the even field has

Neumann boundary conditions “fe(x, y)/“x|x=0=0 and the odd field has

Dirichlet boundary conditions fo(x=0, y)=0. It is straightforward to show

that

F d2r 1
2 fDf=

1
2 F

x > 0
d2r(feDfe+foDfo) (11)
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The even field contributes to the action only by its free-field part feDfe/2,
which is ‘‘cancelled’’ with its counterpart in the denominator of (9). By

integration per partes, the term foDfo/2 can be rewritten as −(Nfo)2/2,
with a vanishing contribution from the boundary. Thus, when fo is

renamed as f, the rhs of (9) is expressible as a local field theory formulated

in the half-space x > 0:

> Df exp{>x > 0 d
2r[−1

2(Nf)
2]+i`2pb ; j qjf(rj)}

> Df exp[−>x > 0 d
2r 1

2 (Nf)2]
(12)

with Dirichlet boundary conditions f(x=0, y)=0. Now, defining by O · · ·P
the average over the field theory (12), one proceeds along the standard

lines, i.e., express X as follows

X= C
.

N+=0
C
.

N−=0

z̄N++N−ebj(N+−N−)

N+!N−!

×71Fx > 0
d2r e i`2pb f(r)

2
N+

1Fx > 0
d2r e−i`2pb f(r)

2
N−

8 (13)

where z̄=z exp[bv(0)/2] is the fugacity renormalized by the self-energy

term, and afterwards sum over N+ and N−. The final result reads

X=
> Df exp{>x > 0 d

2r[−1
2 (Nf)2+2z̄ cos(`2pb f−ibj)]}

> Df exp[−>x > 0 d
2r 1

2 (Nf)2]
(14)

with the fixed value of the field at the boundary, f(x=0, y)=0.
The field theory in (14) can be viewed as the ordinary 2D Euclidean

sine-Gordon model in the half-space, defined by the action

AsG=F
x > 0

d2r[1
2 (Nf)2−2z̄ cos(bsGf)] (15a)

with

bsG=`2pb (15b)

and Dirichlet boundary conditions f(x=0, y)=f0,

f0=−i=
b

2p
j (15c)
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The boundary value f0 usually enters into the formalism in the combi-

nation

t=
4p
bsG
f0=−2ij (16)

which will also be used in what follows. For j real (which is the case of

interest), we assume that the solution of the present theory corresponds to

an analytical continuation of the results of the theory with real Dirichlet

boundary conditions.

Without going into details we mention that one can proceed as above

also in the case of the 2D TCP in contact with a dielectric of dielectric

constant =0. In that case, the images have the same charges as the source

particles, the even field (10a) becomes the relevant one, and that gives a

mapping onto an equivalent boundary sine-Gordon model with Neumann

boundary conditions.

3. BOUNDARY SINE-GORDON MODEL

The integrability property of the bulk (infinite in both x, y-directions)
sine-Gordon model along the standard lines of the Bethe ansatz technique

is well known from the seventies. (8) The discrete symmetry of the theory

fQf+2pn/bsG (n integer) is spontaneously broken in the domain 0 <
b2

sG < 8p; one has to consider one of infinitely many ground states {|0nP}
characterized by OfPn=2pn/bsG, say the one with n=0. The spectrum of

particles involves soliton S, antisoliton S̄ and soliton-antisoliton bound

states (breathers) {Bj, j=1, 2, ... < 1/q} with masses

mj=2M sin 1
jqp
2 2 (17)

where M is the soliton mass. The parameter q, defined by

q=
b2

sG

8p−b2
sG

(18)

ranges from 0 to .: the breathers exist for q ¥ (0, 1) (or in the plasma

stability range 0 < b< 2) and there are no breathers for q larger than 1

(2 < b< 4).
In the seminal work (9) it was argued that the restriction of the sine-

Gordon model to the half space (x > 0, y) does not break its integrability

if one adds a boundary action term

(AsG)B=−F
.

−.
dy 2m cos 5

bsG

2
(fB−f0)6 (19)
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where m and f0 are free parameters, and fB(y)=f(x, y)|x=0. The underly-

ing sine-Gordon theory (15) corresponds to the mQ. limit of (19) which

sets fB to f0.

The free energy of the theory (15) is related to the ground state energy

of the boundary quantum (1+1)-dimensional sine-Gordon model, defined

by Lagrangian

LsG=F
L

0
dx[1

2 (“f)2+2z̄ cos(bsGf)] (20)

LQ., with boundary conditions f(0)=f0 and f(L)=f −0 considered in

terms of t and tŒ, respectively [see eq. (16)]. There exists a lattice

regularization of the theory (20), namely the XXZ model in boundary

magnetic fields, (10) defined by Hamiltonian

HXXZ=E
y

2p sin y 3 C
N−1

j=1
[sx

js
x
j+1+s

y
js

y
j+1−(cos y) sz

js
z
j+1]+hsz

1+hŒsz
N4 (21)

with y ¥ (0, p/2). Here, E=1 and E=−1 correspond to the ferromagnetic

and antiferromagnetic cases of the XXZ-chain, respectively. This model

results as the hamiltonian limit of the inhomogeneous 6-vertex model on an

open strip (11), with an alternating imaginary part ± iL added to the

spectral parameter on alternating vertices. The continuum scaling limit is

given by taking LQ., NQ., and the lattice spacing aQ0, such that

L — Na remains finite. In the bulk, the regularization fixes `z̄ 3 (1/a)
×exp(−const×L) and

b2
sG=8y (E=1) (22a)

b2
sG=8(p−y) (E=−1) (22b)

As y ¥ (0, p/2), the ferromagnetic regime corresponds to q ¥ (0, 1) and the

antiferromagnetic regime to q ¥ (1,.). As concerns the interrelation

between the ‘‘surface’’ quantities, (12) one defines the function

f(a, b)=−i ln 1
sinh((ib−a)/2)
sinh((ib+a)/2)2 (23a)

and

H —
1
y

f(iy, −i ln(h+cos y)) (23b)
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Then, introducing an auxiliary variable

t=
p

y
t \ 2 (24)

one has

t=
p

2
(t−1−H) (E=1) (25a)

t=
p

2 11−
H

t−12 (E=−1) (25b)

The same formula hold for tŒ in terms of HŒ, resp. hŒ.
To study boundary effects in the XXZ model (21), one looks for the

solutions of the Bethe equations which correspond to a wave-function

localized at j=0 or j=N and exponentially decreasing away from the

boundary. These boundary bound states were identified with new bound-

ary strings in the Bethe ansatz (13, 14) (for a review see ref. 15). In the ther-

modynamic limit NQ., when the left and the right boundaries can be

treated independently and the overlap of the corresponding wave-functions

is negligibly small, the lattice ground state energy was found as a function

of the parameter L of the related 6-vertex model. In the continuum limit

LQ. corresponding to the (1+1)-dimensional sine-Gordon model (20),

the ground state energy of the last (minus the ground state energy of the

free-field model with the same boundary condition) was obtained in the

form

Eground=Ebulk+Ebdries+O(1/L) (26)

where

Ebulk=−L
M2

4
tan 1

p

2(t−1)2 (27a)

Ebdries=−
M
2 5

sin(Hp/[2(t−1)])
sin(tp/[2(t−1)])

+
sin(HŒp/[2(t−1)])
sin(tp/[2(t−1)])

−cot 1
tp

4(t−1)2−16 (27b)
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for the ferromagnetic case E=1 (13) (note a different notation in this

reference) and

Ebulk=L
M2

4
cot 1

tp
2 2 (28a)

Ebdries=−
M
2 5

sin((t−H) p/2)
sin(tp/2)

+
sin((t−HŒ) p/2)

sin(tp/2)
−cot 1

tp
4 2−16 (28b)

for the antiferromagnetic case E=−1. (14) In terms of the sine-Gordon

parameters, ‘‘bulk’’ q (18) and ‘‘boundary’’ t, tŒ (25), both Eqs. (27) and

Eqs. (28) take the same form

Ebulk=−L
M2

4
tan 1

qp
2 2 (29a)

Ebdries=−
M
2 3

1
cos(qp/2)

[cos(qt)+cos(qtŒ)−1]+tan 1
qp
2 2−14 (29b)

4. SURFACE TENSION OF THE PLASMA

For a Coulomb gas of volume V bounded by a surface of area S, the
grand potential W=−b−1 ln X is the sum of a volume part and a surface

part:

W=−Vp(z, b)+Sc(z, b) (30)

where p is the pressure and c the surface tension. For a strip L×R, RQ.
and L large, the ‘‘specific’’ W/R is given by

lim
RQ.

W

R
=−Lp(z, b)+c(z, b)|x=0+c(z, b)|x=L+O(1/L) (31)

The thermodynamics of (14) is mapped onto the ground state of (20)

according to

bW=REground (32)

In the considered LQ. limit, the boundary energy (29b) is the sum of two

clearly separated contributions coming from the boundaries at x=0 and
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x=L. To calculate the surface tension, one keeps only the contribution at

x=0, and identifies t with the bulk potential j via eq. (16). Thus, one gets

bp=
M2

4
tan 1

qp
2 2 (33a)

bc=−
M
4 3

1
cos(qp/2)

[2 cos(qt)−1]+tan 1
qp
2 2−14 (33b)

Inserting (15b) into (18) and considering (16), the sine-Gordon param-

eters are expressible in terms of the Coulomb ones as follows

q=
b

4−b
, t=−2ij (34)

As concerns the link between the soliton mass M and the fugacity z, the
formalism of section 2 showed us that z renormalizes multiplicatively. To

give z a precise meaning, one has to fix the normalization of the field

cos(bsGf). The conformal normalization proposed in refs. 16 and 17

corresponds to the short-distance limit of the two-point correlation

function

Ocos(bsGf)(x) cos(bsGf)(y)PQ 1
2 |x−y|−bsG

2/(2p) (35)

This normalization, equivalent to a well known leading short-distance

behaviour of the positive-negative pair correlation in the Coulomb gas,

fixes the z-M relationship as follows

z=
C(q/(q+1))
pC(1/(q+1)) 5M

`p C((q+1)/2)

2C(q/2) 6
2/(q+1)

(36)

The total particle number density, generated via

n=z
“(bp)
“z

(37)

is related to M as follows

n=
1
4

M2(1+q) tan 1
pq
2 2 (38)

The n-z relationship is given in paper I, Eqs. (49), (50). The singular behav-

iour of n as bQ2 (z fixed) can be deduced from these formulae:

n ’
4z2p

2−b
(39)
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Finally, we have

bp=n 11−
b

42 (40)

and

bc=−
1
2 5

n(4−b)
2 sin(pb/(4−b))6

1/2

32 cosh 1
2bj
4−b2−1

+sin 1
pb

2(4−b)2−cos 1
pb

2(4−b)24 (41)

bc has the small b-expansion

bc=−
1
8

(2pbn)1/2 31+5
p

16
+

2j2

p 6 b+5
p

64 11+
p

62+
j2

2p6 b
2+ · · ·4 (42)

With regard to (39), for z fixed, p and c exhibit the same type of collapse

singularities as bQ2−:

p ’
z2p

2−b
(43)

and

c ’ −
z cosh(2j)

2−b
(44)

5. HIGH-TEMPERATURE EXPANSION

As a check of the exact expression (41) of the surface tension, the

beginning of its high-temperature expansion [expansion in powers of b,

eq. (42)] will now be compared to a direct evaluation of the two first terms

of this expansion derived from the renormalized Mayer expansion of the

free energy of the Coulomb system. In the following, all functions and

integrals are defined in the half-space x \ 0.
The surface tension c can be defined as the boundary part per unit

length of the grand potential W. The total numbers of positive and negative

particles, respectively, are N+=−bz+“W/“z+ and N−=−bz−“W/“z−.
Going to the variables z and j defined by z± =ze ±bj gives for the total
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number of particles N=N++N−=−bz“W/“z. The boundary part of this

relation is

−bz
“c

“z
=F

.

0
dx [n(x)−n] (45)

Since, as recalled in I, z is proportional to n1−b/4, (45) can be rewritten as

−bn
“c

“n
=11−

b

42 F
.

0
dx[n(x)−n] (46)

This relation (46) will be used for computing the surface tension c from the

density profile n(x) which will be determined as a function of the bulk

density n, the electric potential j in the bulk, and the inverse temperature b.

Our starting point is the relation obeyed by the density profiles:

ln 5
n± (1)
z± (1)6=

dD[n]
dn± (1)

(47)

where D[n] is the negative of the excess free energy times b, considered as a

functional of the position-dependent densities, and z± (1) is the position-

dependent fugacity at point 1. Since a particle at a distance x from the

boundary has an interaction (1/2) ln(2x) with its own image,

z± (x)=z exp[ ±bj−(b/2) ln(2x)] (48)

The relation (47) is exact. Here, the renormalized Mayer expansion,

described in I, is used for expanding D[n] up to order b2, i.e., we keep only

the contributions D̄0 (two field circles connected by a simple −bv bond

plus the sum of ring diagrams) and the graph D1. However the latter one

will be shown to give no contribution to the density profiles at the desired

order, and we shall be left with only D̄0, which constitutes an approxima-

tion of the Debye–Hückel type. However, here, the interaction v(1, 2)
between particles 1 and 2 includes the contributions from the images, i.e.,

v(1, 2)=−ln r12+ln rg
12 where r12 is the distance between points 1 and 2, rg

12

is the distance between point 1 and the image of point 2. The contribution

of D̄0 to the functional derivative in (47) is

dD̄0[n]
dn± (1)

=+b F d2 v(1, 2)[n+(2)−n−(2)]+
1
2

[K(1, 1)+bv(1, 1)] (49)

where K(1, 2) is the renormalized bond defined by the integral equation

K(1, 2)=−bv(1, 2)+F d3[−bv(1, 3)] n(3) K(3, 2) (50)
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This integral equation (50) can be transformed into a partial differential

equation by taking the Laplacian with respect to 1, D1, of both sides of

(50), and using D1v(1, 2)=−2pd(1, 2), which gives

D1K(1, 2)=2pbd(1, 2)+2pbn(1) K(1, 2) (51)

Since v(1, 2), the Coulomb interaction in presence of a conducting wall,

vanishes when 1 is on the wall, the same boundary condition holds for

K(1, 2).
The above equations can be solved for the density profile n(x) by

iterations, starting with the lowest-order approximation of a constant

n(x)=n in (51). Then, the solution of (51), with its boundary condition, is

K (0)(1, 2)=−bK0(or12)+bK0(or
g
12) (52)

where o2=2pbn (o is the inverse Debye length), and K0 is the modified

Bessel function of second kind. Using this lowest-order K (0) in (49),

approximating D[n] by D̄0[n] and using (48) in (47), gives

n± (x)=z exp{ ±b[j−j(x)]+1
2 lim
r12Q0

[−bK0(or12)−b ln r12]+1
2 bK0(2ox)}

(53)

where, with point 1 at a distance x from the boundary,

j(x)=F d2 v(1, 2)[n+(2)−n−(2)] (54)

j(x) is the electric potential created at point 1 by the charge distribution

(localized near the boundary) n+(2)−n−(2). j−j(x) is a finite quantity

which goes to zero as xQ.. Since, at the Debye–Hückel order of

approximation, the bulk fugacity and density are related by

n=2z exp{(1/2) lim
r12Q 0

[−bK0(or12)−b ln r12]} (55)

(53) can be rewritten as

n± (x)=
n
2
exp{ ±b[j−j(x)]+(b/2) K0(2ox)} (56)

(56) has a simple physical interpretation: each particle feels a mean one-

body potential made of two parts: j(x) is the electric potential created by

the surface charge density in the plasma, −(1/2) K0(2ox) is the screened
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interaction of the particle with its image. The linearized form of (56) gives

for the density profile

n(x)=n+(x)+n−(x)=n[1+1
2 bK0(2ox)] (57)

In the following, the integrals

F
.

0
K0(x) dx=

p

2
(58a)

and

F
.

0
K2

0(x) dx=
p2

4
(58b)

will be needed. Using (57) and (58a) in (46) gives the surface tension c at

lowest order in b:

bc=− 1
8 (2pbn)1/2 (59)

At this order in b, an explicit form of j(x) was not needed for computing

the surface tension, neither does that surface tension depend on the param-

eter j. However, j(x) will be needed in the following. It can be easily

obtained by writing, from the linearized form of (56), n+(x)−n−(x)=
bn[j−j(x)] and using the Poisson equation d2[j−j(x)]/dx2=
2p[n+(x)−n−(x)] with the boundary condition j(0)=0. One obtains

j−j(x)=j exp(−ox) (60)

The next iteration for n(x) is obtained by using the density (56) in the

equation (51) for K and treating n(x)−n=(1/2) nbK0(2ox) as a perturba-

tion. Now K=K (0)+K (1), where K (0) is defined by (52). To first order in the

density perturbation, (51) and (52) give

(D1−o2) K (1)(1, 2)=2pbdn(1) K (0)(1, 2) (61)

where dn(1)=(1/2) nbK0(2ox) with x the distance of point 1 to the boun-

dary. The solution of (61), with the boundary condition that K (1)(1, 2)
vanishes when 1 is on the wall, is studied, by the method of Green func-

tions, in the Appendix, where it is shown that K (1)(1, 1) is a function of the

coordinate x1 of 1 such that

F
.

0
dx1K (1)(1, 1)=

b2

16o 1p−
p2

4 2 (62)
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It is a priori necessary to keep also the contribution from the graph D1 to

D[n]. However, at the present order in b, dD1[n]/dn± (1) can be evaluated

for constant densities and then it vanishes. Taking also K (1) into account,

we now have, instead of (56),

n± (x)=
n
2
exp{ ±b[j−j(x)]+

1
2

[bK0(2ox)+K (1)(x)]} (63)

where K (1)(1, 1), when 1 has the coordinate x, is renamed K (1)(x). Expand-
ing the exponential in (63) to order b2 gives for the total density n++n−

n(x)−n=
nb
2

K0(2ox)+
n
2

K (1)(x)+
nb2

8
K2

0(2ox)+
nb2

2
[j−j(x)]2 (64)

where it is sufficient to use for j−j(x) the lower-order expression (60).

Thus, using (58) and (62), one finds

F
.

0
dx[n(x)−n]=

o

16 51+
b

4 11−
p

42+
bp

8
+

2b
p
j2

6 (65)

Using (65) in (46) gives the final result

bc=−
1
8

(2pbn)1/2 51+1
p

16
+

2j2

p 2 b+O(b2)6 (66)

in agreement with (42).

6. COLLAPSE SINGULARITY

To check the singular behaviour of the surface tension c near the

collapse point b=2, eq. (44), one starts with the exact xQ0 limits

n+(x)−n+ ’
z+

(2x)b/2
, n−(x)−n− ’

z−
(2x)b/2

(67)

which can be derived directly by using the grand canonical or canonical

formalisms, in analogy with the short-distance expansion of the positive-

negative pair correlation in the bulk. At b=2, the exact result for the

density profile reads (4)

n± (x)−n± =
m
2p

F
.

0
dl 5−

m
ol

+
ol exp( ±bj)+m
m cosh(bj)+ol 6

exp(−2olx) (68)
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where m=2pz and ol=(m2+l2)1/2 (note that in the original work (4) there

are some mistakes in the equation (3.25)). The xQ0 limit of eq. (68)

n± (x)−n± ’
z±

2x
(69)

still is of the form (67), even when the n± densities diverge. Consequently,

one can put

n(x)−n=
2z cosh(bj)

(2x)b/2
f(2x) (70)

where f is a function regular in b around b=2, with

f(0)=1 (71a)

The density n(x) is supposed to tend to its asymptotical xQ. value n
faster than any inverse power of x, so that

lim
xQ.

f(2x)Q0 faster than any inverse power of x (71b)

According to (45), it holds

−bz
“c

“z
=z cosh(bj) F

.

0
dt t−b/2f(t) (72)

An integration per partes gives

F
.

0
dt t−b/2f(t)=

1
1−b/2 5t

1−b/2f(t)|.t=0−F
.

0
dt t1−b/2

“f(t)
“t 6 (73)

For b< 2, t1−b/2f(t) vanishes at t=0 as well as in the limit tQ. due to

the fast decay of f(t). Then,

b
“c

“z
=
cosh(bj)
1−b/2

F
.

0
dt t1−b/2

“f(t)
“t

(74)

When bQ2−, one can perform a (2−b) expansion of the integral in (74),

F
.

0
dt t1−b/2

“f(t)
“t

=f(.)−f(0)+O(2−b) (75)

With regard to (71a) and (71b), one arrives at the desired formula (44).
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7. CONCLUSION

A two-dimensional model for the interface between an electrolyte and

an electrode has been considered: the 2D TCP bounded by a rectilinear

ideal conductor wall. Previously, the surface tension c in this model was

known (5) only at the special inverse temperature b=2 (in which case, for

obtaining a finite result, a hard core repulsion between the particles and the

wall had to be assumed). Now, the main result of the present paper,

eq. (41), provides the surface tension for point particles at any temperature,

in the stability range of the model b< 2.
The surface tension depends on the bulk density n as n1/2, as a priori

expected for dimensional reasons. Its temperature dependence is more

complicated than the one of the bulk pressure but simpler than the tem-

perature dependence of some bulk thermodynamic quantities derived in I.

As in the bulk case, the computation of particle distributions requires

a new progress in the corresponding integrable sine-Gordon theory. As

concerns a wall of general dielectric constant, we also succeded in finding

the temperature dependence of the surface tension for the particular case of

an ideal dielectric (dielectric constant =0). This result will be reported in a

forthcoming publication. A generalization of the considered rectilinear

conductor to other geometries would be nontrivial.

APPENDIX

In this Appendix, the correction K (1) to the renormalized bond is

studied. In terms of the Green function K (0) which obeys

(D1−o2) K (0)(1, 2)=2pbd(1, 2) (A1)

with the boundary condition K (0)(1, 2)=0 when point 1 is at x=0, the

solution of (61) with the same boundary condition is

K (1)(1, 2)=F d3 K (0)(1, 3) K (0)(3, 2) dn(3) (A2)

where K (0) is given by (52) and dn(3)=(1/2) nbK0(2ox3). Thus, the desired

integral (62) is

F
.

0
dx1K (1)(1, 1)=F

.

0
dx1 F

.

−.
dy3 F

.

0
dx3[−bK0(or13)+bK0(or

g
13)]

2

×
bn
2

K0(2ox3) (A3)
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The integrals on x1 and y3 will be performed first. Since the integrand

is an even function of x1, the integral on x1 and y3 is half that integral

performed on the whole plane. Furthermore, y3 can be shifted into y1.

Therefore,

I(x3)=F
.

0
dx1 F

.

−.
dy3[−K0(or13)+K0(or

g
13)]

2

=F d2r1[K2
0(or13)−K0(or13) K0(or

g
13)] (A4)

One now has a convolution integral which can be performed by going to

Fourier space:

I(x3)=F d2k
1−J0(2kx3)

(o2+k2)2
=
p

o2 51+o
d

do
F
.

0

dk kJ0(2kx3)
o2+k2 6

=
p

o2 51+o
dK0(2ox3)

do 6=
p

o2 [1−2ox3K1(2ox3)] (A5)

Using (A5) in (A3) gives, using as a rescaled integration variable x=2ox3,

F
.

0
dx1K (1)(1, 1)=

b2

8o
F
.

0
dx[1−xK1(x)] K0(x) (A6)

After an integration by parts using K1(x)=−dK0(x)/dx, and taking into

account (58b), one finds (62).
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1. L. Šamaj and I. Travěnec, J. Stat. Phys. 101:713 (2000); cond-mat/0004021.

2. E. H. Lieb and J. L. Lebowitz, Adv. Math. 9:316 (1972).

3. B. Jancovici, J. Physique 47:389 (1986).

4. F. Cornu and B. Jancovici, J. Chem. Phys. 90:2444 (1989).

5. P. J. Forrester, J. Stat. Phys. 67:433 (1992).

6. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).

7. C. G. Callan and I. R. Klebanov, Phys. Rev. Lett. 72:1968 (1994).

8. A. B. Zamolodchikov and Al. B. Zamolodchikov, Ann. Phys. (N.Y.) 120:253 (1979).

9. S. Ghoshal and A. B. Zamolodchikov, Int. J. Mod. Phys. A 9:3841 (1994).
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